

Tungaloy ReportNo. 409-E

TDS type

The most economical solution for drilling!

Synergy created with 6-cutting edg grade to provide incredibly econo

Features

Double-sided insert with 6-cutting edges

TungSixDrill is the first indexable drill in the world to adapt double-sided inserts with 6-cutting edges. The 6-cutting edges reduce the number of inserts consumed.

This prevents the overlapping of damaged edges

One insert type can be used on both the central and peripheral edge

Customers only require one type of insert. This simplifies inventory control.

Optimized cutting balance

Optimized cutting balance of TungSix-Drill provides excellent hole accuracy.

Hole diameter

Competitors

es & revolutionary mical solution

New revolutionary grade

AH9030 PVD coated grade

Special Surface Technology

Smooth insert surface prevents chip adhesion and provides smooth chip flow.

New generation PVD coating

Advanced wear and oxidation resistance.

Adhesion reinforcement technology

This specialized treatment enhances the adhesion between the coating and the substrate. Drastically improves chipping and fracture resistance.

Enhanced corner of central insert

The corner of the central cutting edge on the TungSix-Drill improves performance by adapting a negative angle relief. This enhanced corner prevents fracture.

Twisted coolant holes

Twisted coolant holes improve coolant flow. This improves chip evacuation, cooling and lubrication of the cutting edges.

IGSIX-DRILL

Chipbreakers

DJ type

General purpose chipbreaker for almost all applications. Features low cutting forces and allows stable drilling.

Low cutting forces and long tool life

Bumps and grooves formed on the rake face reduce cutting forces and deliver longer tool life.

Peripheral insert

Identification for peripheral edge side

Chipbreaker for peripheral edge

The high rake angle and high breaker wall reduce cutting forces and improve chipbreaking.

Wiper design

Can improve surface finish

System to avoid wrong insert clamping

TungSix-Drill has been adapted to ensure the new system prevents incorrect insert clamping. Incorrect clamping of central and peripheral insert does not happen.

Note: The drill is designed to avoid wrong insert clamping. Please check the central and peripheral insert faces before setting the insert.

Grades

	Grade	Substrate			Coating I	ayer		
Application	Application code	Specific gravity	Hardness (HRA)	T.R.S. (GPa)	Main Composition	Thickness (µm)	Features	
Ρ	AH9030	14.5	90.8	28	(Ti Al)N	5	For steels and stainless steels	
Steel	P20 - P35	14.0	50.0	2.0	(11, 74)		Excellent wear and oxidation	
М	AH9030	145	00.9	0.0		F	speed conditions. "PremiumTec"	
Stainless	M20 - M35	14.5	90.8	2.8	(11, AI)N	5	prevents edge welding.	

Cutting performance

Reduction of cutting force

TungSix-Drill adapts its positive land, this enables the drill to reduce the cutting forces even when using double-sided inserts. The cutting forces are almost equal to competitors with single sided inserts.

Spindle power consumption

Chip control

	Cut	ting speed: Vc (m/r	nin)
	100	150	200
v) 0.2	* * * * * * * * * *	*****	* * * * * *
ed: f (mm/re 0.15	99999 22424	1 2 4 9 9 1 2 4 4 9 9	7 7 7 6 9 7 8 9 4 49 9
Fe 0.1		54 8 95 54 8 95	20 mm
Chip cont rang crea shap	os are stably rolled in this e. The chips ted are the ideal be.	Drill : T Insert : V Grade : A Work material : S Machine : N Hool diameter : Ø Hole depth : H Coolant : V	DS280W32-3 VWMU08X408R-DJ H9030 45C / C45 IC lathe 28 mm H = 70 mm Vet

Tool life

Drill	: TDS280W32-3
Insert	: WWMU08X408R-DJ
Grade	: AH9030
Work material	: S55C / C55
Cutting speed	: Vc = 140 m/min
Feed	: <i>f</i> = 0.1 mm/rev
Hole diameter	: ø28 mm
Hole depth	: H = 84 mm
Machine	: Horizontal M/C, BT40
Coolant	: Wet (Internal supply)

AH9030 offers superior to wear resistance against competitors.

Enhanced corner of central cutting edge prevents fracture even in prehardened steel machining.

Inserts

DJ chipbreaker			Stocked grades	Din	nensi	ons (n	nm)	Applicable drill	
ŗε	5	Cat. No.	AH9030	ød	Т	ød1	ľε	diameters øDc (mm)	
		WWMU08X408R-DJ	•	8.0	3.9	3.4	0.8	ø28.0 ~ ø32.0	
8		WWMU09X510R-DJ	•	9.7	4.9	4.4	1.0	ø33.0 ~ ø38.0	
(but but)		WWMU11X512R-DJ	•	11.3	5.7	5.5	1.2	ø39.0 ~ ø46.0	
		WWMU13X512R-DJ	•	13.0	5.7	5.5	1.2	ø47.0 ~ ø54.0	

Drills *L/D* = 2

Cat Na	Charali	Dimensions (mm)					Max	Weight	Appliachla incorta	Clamping screw	Torx driver	
Cat. No	STOCK	øDc	øDs	øD	l	ls	L	(Radius)	(kg)	Applicable inserts		
TDS280W32-2	•	28			56		145	1.3	0.6		CSTB-3	T-9D
TDS290W32-2	٠	29			58		148	1.1	0.7			
TDS300W32-2		30	32	40	60	55	151	0.8	0.7	WWMU08X408R-DJ		
TDS310W32-2		31			62		154	0.5	0.7			
TDS320W32-2	•	32			64		157	0.2	0.8			
TDS330W40-2		33			66		170	1.7	1.2			
TDS340W40-2		34			68		173	1.4	1.2		CSTB-4	
TDS350W40-2		35	40	50	70	65	176	1.2	1.2			T-15D
TDS360W40-2		36	40	50	72	00	179	0.9	1.3			
TDS370W40-2		37			74		182	0.7	1.3			
TDS380W40-2		38			76		185	0.4	1.3			
TDS390W40-2		39			78		188	2.2	1.4		CSTB-5	T-20D
TDS400W40-2		40		50	80		191	1.9	1.4			
TDS410W40-2		41			82		194	1.7	1.5			
TDS420W40-2		42	40		84	65	197	1.5	1.6	WWMU11X512B-D.I		
TDS430W40-2		43	10		86	00	200	1.3	1.6			
TDS440W40-2		44		55	88		203	1	1.7			
TDS450W40-2		45			90		206	0.7	1.7			
TDS460W40-2		46			92		209	0.4	1.8			
TDS470W40-2		47			94		212	2.6	1.9			
TDS480W40-2		48			96		215	2.4	1.9			
TDS490W40-2		49			98		218	2.2	1.9			
TDS500W40-2		50	40	55	100	65	221	2	2.0	WWMU13X512R-DJ	CSTB-5	T-20D
TDS510W40-2		51		00	102		224	1.7	2.1		50.2 5	. 200
TDS520W40-2		52			104		227	1.5	2.2			
TDS530W40-2		53			106		230	1.3	2.3			
TDS540W40-2		54			108		233	1	2.4			

L/D = 3

Cat Na	Chaoli	Dimensions (mm)						Max	Weight	Applicable incorte	Clamping screw	Torx driver
Cat. No	STOCK	øDc	øDs	øD	l	ls	L	(Radius)	(kg)	Applicable inserts		
TDS280W32-3		28			84		173	1.3	0.7			T-9D
TDS290W32-3		29			87		177	1.1	0.7		CSTB-3	
TDS300W32-3		30	32	40	90	55	181	0.8	0.8	WWMU08X408R-DJ		
TDS310W32-3		31			93		185	0.5	0.8			
TDS320W32-3		32			96		189	0.2	0.9			
TDS330W40-3		33			99		203	1.7	1.3		CSTB-4	
TDS340W40-3		34			102		207	1.4	1.3			T-15D
TDS350W40-3		35	40	50	105	65	211	1.2	1.3			
TDS360W40-3		36	40	50	108	05	215	0.9	1.4	WWWW0097310H-D3		
TDS370W40-3		37			111		219	0.7	1.4			
TDS380W40-3		38			114		223	0.4	1.5			
TDS390W40-3		39			117	ļ	227	2.2	1.6		CSTB-5	T-20D
TDS400W40-3		40		50	120	ļ	231	1.9	1.6	_		
TDS410W40-3		41			123		235	1.7	1.7			
TDS420W40-3		42	40		126	65	239	1.5	1.8	WWML111X512B-D.L		
TDS430W40-3		43			129	00	243	1.3	1.8			
TDS440W40-3		44		55	132		247	1	1.9	_		
TDS450W40-3		45			135	ļ	251	0.7	2.0	_		
TDS460W40-3		46			138		255	0.4	2.1			
TDS470W40-3		47			141	ļ	259	2.6	2.2			
TDS480W40-3		48			144	ļ	263	2.4	2.3			
TDS490W40-3		49			147		267	2.2	2.3			
TDS500W40-3		50	40	55	150	65	271	2	2.4	WWMI 13X512B-D.I	CSTB-5	T-20D
TDS510W40-3		51		00	153		275	1.7	2.5		0010-0	1 200
TDS520W40-3		52			156	Į	279	1.5	2.6			
TDS530W40-3		53			159		283	1.3	2.7			
TDS540W40-3		54			162		287	1	2.9			

• : Stocked items

Standard cutting conditions

		Feed: f (mm/rev)			
Work materials	Cutting Speed	øDc	(mm)		
	Vc (m/min)	ø28 ~ ø32	ø33 ~ ø54		
Low carbon steels (C < 0.3) SS400, SM490, S25C etc. (St42-1, St52-3, C25 etc.)	160 - 320	0.04 - 0.10	0.04 - 0.10		
Carbon steels (C > 0.3) S45C, S55C etc. (C45, C55 etc.)	80 - 250	0.06 - 0.15	0.08 - 0.18		
Low alloy steels SCM415 etc.	160 - 250	0.06 - 0.12	0.06 - 0.14		
Alloy steels SCM440, SCr420 etc. (42CrMo4, 20Cr4 etc.)	80 - 200	0.06 - 0.15	0.08 - 0.18		
Stainless steels (Austenitic) SUS304, SUS316 etc. (X5CrNi18-9, X5CrNiMo17-12-2 etc.)	100 - 200	0.04 - 0.12	0.04 - 0.12		
Stainless steels (Martensitic and ferritic) SUS430, SUS416 etc. (X6Cr17, X20Cr13 etc.)	100 - 200	0.04 - 0.12	0.04 - 0.12		
Stainless steels (Precipitation hardening) SUS630 etc. (X5CrNiCuNb16-4 etc.)	80 - 120	0.04 - 0.10	0.06 - 0.10		
Grey cast irons FC250 etc. (GG25 etc.)	80 - 250	0.06 - 0.18	0.08 - 0.20		
Ductile cast irons FCD700 etc. (GGG70 etc.)	80 - 200	0.06 - 0.18	0.08 - 0.20		

Application range

In case of Interrupted cutting, feed should be decreased.

Feed f (mm/rev)	Upper table	0.05	0.05	0.05		
	OK Plane surface	OK Slant surface	OK Cross hole	OK Plunging		
Application						
Feed f (mm/rev)	0.1	0.05	Disapprove	Disapprove		
	OKBoring	OK Round surface	Stacked plate	Back boring		

New chamfering tool "TDXCF Series"

The TDXCF Series with the TungSix-Drill completes both drilling and chamfering at the same time. This reduces machining processes by chamfering and drilling simultaneously.

Features

High productivity with two inserts.

Optimum space between the drill body and chamfering inserts prevents cutting edges from fracture.

TUNGS X-DRILL

Cutting performance

Surface finish

Tool	: TDXCF280L30
Work material	: Carbon steel
Machine	: Vertical M/C, BT40
Coolant	: Wet
Cutting condition	: Vc = 140 m/min
Chamfering width	a : C = 2.0 mm

New chamfering tools TDXCF provides stable surface finish.

Cutting force

Chip control

Continuous spiral chips prevent them from wrapping around the drill body or work piece.

Tool Work material	: TDXCF280L30 : Carbon steel
	S55C / C55 (245HB)
Machine	: Vertical M/C, BT40
Coolant	: Wet
Cutting condition	: <i>V</i> c = 140 m/min
Chamfering width	: C = 2.0 mm

Chamfering tool insert & part list

Cat. No.	Insert	Grade, Stock GH130	Insert clamping screw	Torque (N⋅m)	Ring clamping screw	Torque (N⋅m)	Wrench for insert	Wrench for ring
TDXCF280L30	XHGX090700R-45A	•	CSPB-4S	3.5	CM8 x 20	8.0	T-15D	P-5

Chamfering ring (TDXCF Series)

			Dimensi	ons (mm)			Max. drilling depth (mm)	
Cat. No.	Stock	øDs	øDc	L	Drill dia. øDc	Application drill	L/D = 2	L/D = 3
TDXCF280L30		26.9	64	30	28	TDS280W32-	36.9	64.9
TDXCF290L30		27.9	64	30	29	TDS290W32-	39.2	68.2
TDXCF300L30		28.9	64	30	30	TDS300W32-	41.5	71.5
TDXCF310L30		29.9	64	30	31	TDS310W32-	43.8	74.8
TDXCF320L30		30.9	64	30	32	TDS320W32-	46.1	78.1
TDXCF330L30		31.8	64	30	33	TDS330W40-	48.4	81.4
TDXCF340L30		32.8	64	30	34	TDS340W40-	50.7	84.7
TDXCF350L30		33.8	64	30	35	TDS350W40-	53.0	88
TDXCF360L30		34.8	85	30	36	TDS360W40-	56.3	92.3
TDXCF370L30		35.8	85	30	37	TDS370W40-	57.6	94.6
TDXCF380L30		36.8	85	30	38	TDS380W40-	59.9	97.9
TDXCF390L30		37.8	85	30	39	TDS390W40-	62.2	101.2
TDXCF400L30		38.8	85	30	40	TDS400W40-	64.5	104.5
TDXCF410L30		39.8	85	30	41	TDS410W40-	66.8	107.8
TDXCF420L30		40.6	85	30	42	TDS420W40-	69.1	111.1
TDXCF430L30		41.6	85	30	43	TDS430W40-	71.4	114.4
TDXCF440L30		42.6	85	30	44	TDS440W40-	73.7	117.7
TDXCF450L30		43.6	85	30	45	TDS450W40-	76.0	121
TDXCF460L30		44.6	85	30	46	TDS460W40-	79.3	125.3
TDXCF470L30		45.6	85	30	47	TDS470W40-	80.6	127.6
TDXCF480L30		46.6	85	30	48	TDS480W40-	82.9	130.9
TDXCF490L30		47.6	85	30	49	TDS490W40-	85.2	134.2
TDXCF500L30		48.6	85	30	50	TDS500W40-	87.5	137.5
TDXCF510L30		49.6	85	30	51	TDS510W40-	89.8	140.8
TDXCF520L30		50.6	85	30	52	TDS520W40-	92.1	144.1
TDXCF530L30		51.6	85	30	53	TDS530W40-	94.4	147.4
TDXCF540L30		52.6	85	30	54	TDS540W40-	96.7	150.7

Stocked items

Points of caution when mounting the chamfering ring on drill body

- Place the ring on the drill body and match the ring flute with the drill flute. Temporarily clamp the ring on the body by lightly tightening the ring screw.
 Place the inserts on the ring and lightly tighten the insert screws.
- ② Adjust the ring to the right position with a Presetter, height gauge or Vernier caliper.
- ③ Securely tighten the ring screw and then the insert screw.

Insert is in the wrong position due to incorrectly placed ring

Match the ring flute with the drill flute

(Insert will be automatically set to the right position)

The ring flute does not match the drill flute

Adjustable drilling diameter holder

Enables diameter of TungSix-Drill to adjust easily Specification

BT / DIN69871 type

G

HSK type

Cat Na	Charali	Dimensions (mm)								Tool Dia.
Cat. No.	STOCK	S.s.	ød	øD	L	<i>L</i> 1	L2	J	G	(mm)
TUNGBORE BT40 EM32		40	32.00	72.0	123.50	96.5	71.0	M10	M16	ø28.0 - ø32.0
TUNGBORE BT40 EM40		40	40.00	72.0	123.50	96.5	71.0	M10	M16	ø33.0 - ø54.0
TUNGBORE BT50 EM32		50	32.00	72.0	134.50	96.5	71.0	M10	M24	ø28.0 - ø32.0
TUNGBORE BT50 EM40		50	40.00	72.0	134.50	96.5	71.0	M10	M24	ø33.0 - ø54.0
TUNGBORE HSK A 63 EM32		63	32.00	72.0	142.00	116.0	71.0	M10	-	ø28.0 - ø32.0
TUNGBORE HSK A 63 EM40		63	40.00	72.0	142.00	116.0	71.0	M10	-	ø33.0 - ø54.0
TUNGBORE DIN69871 40 EM32		40	32	72	135.6	116.5	71	M10	M16	ø28.0 - ø32.0
TUNGBORE DIN69871 40 EM40		40	40	72	135.6	116.5	71	M10	M16	ø33.0 - ø54.0
TUNGBORE DIN69871 50 EM32		50	32	72	115.6	96.5	71	M10	M24	ø28.0 - ø32.0
TUNGBORE DIN69871 50 EM40		50	40	72	115.6	96.5	71	M10	M24	ø33.0 - ø54.0

Stocked items

The bore section is actually made from two shifted circular sections. The clamping screw pushes the drill shank through a narrow opening, forcing elastic deformation of the holder. Contact is made around more than 180°, providing a high clamping force.

TUNGBORE TUNGSIX-DRILL

Adjustable range of TungSix-Drill combined with TungBore

Tool diameter	Adjustable	range (mm)	Tool diameter	Adjustable range (mm)		
øDc (mm)	Min. dia. ø	Max. dia. ø	ax. dia. ø øDc (mm)		Max. dia. ø	
28	28	29.3	42	42	43.3	
29	29	30.3	43	43	44.3	
30	30	31.3	44	44	45.3	
31	31	32	45	45	46.3	
32	32	32.4	46	46	46.8	
33	33	34.3	47	47	48.3	
34	34	35.3	48	48	49.3	
35	35	36.3	49	49	50.3	
36	36	37.3	50	50	51.3	
37	37	38.3	51	51	52.3	
38	38	38.8	52	52	53.3	
39	39	40.3	53	53	54.3	
40	40	41.3	54	54	55.3	
41	41	42.3				

Regarding adjustment, please refer to the operating instructions in the TungBore leaflet for the TungHold (No. 389-E)

EZ sleeve (Eccentric sleeves for TungSix-Drill)

The function of EZ sleeves

Adjusting the hole diameter when drilling	Adjusting cutting edge height on lathe
Adjusting the hole diameter in tool-rotating applications.	Adjusting the cutting edge height in rotating work applications.
By using EZ sleeve, the hole diameter can be adjusted in the range from +0.6 mm to -0.2 mm.	By using EZ sleeve, the cutting edge height can be adjusted in the range from +0.3 mm to -0.2 mm. That reduces troubles caused by improper cutting- edge height.
Scale for adjusting the hole diameter in milling machine (Periphery of sleeve)	Scale for adjusting cutting edge height in turning (Front face of sleeve)

TUNGS X-DRILL

Setting of EZ sleeve

Adjusting the hole diameter on M/C

Set the EZ sleeve between the drill shank and the holder. Align the scale on the periphery of EZ sleeve with the center of the flat on drill flange.

In the figure shown on right, the sleeve is set and the hole diameter will be increased by 0.4 mm.

When rotating EZ sleeve, fixing bolts "A" and "B" have to be loosened. After setting the hole diameter, fix the drill body with bolt "A". Then lightly tighten the bolt "B" to fix EZ sleeve. If the bolt "B" is over tightened, EZ sleeve may be damaged.

Cautious points

- Cannot be used for collet chuck holders.
- ●For adjustments over L/D 4, please reduce feed rate.
- •For smaller adjustment, the drill itself will interfere with the hole diameter. It is recommended that hole diameter should be adjusted to a larger diameter than the drill diameter.

Specifications

Sleeve Cat. No.	Stock	øD1	øD2	øD3	<i>L</i> 1	L2	L 3	L 4	Adjusting range of finishing diameter	Adjusting range of cutting edge height
EZ2025		20	25	46	49	5	32.5	4	+0.4 ~ -0.2	+0.2 ~ -0.15
 EZ2532		25	32	51	52	5	38	4	+0.4 ~ -0.2	+0.2 ~ -0.15
EZ3240		32	40	54	62	5	43	4	+0.4 ~ -0.2	+0.2 ~ -0.15
EZ4050		40	50	69	63	5	55	4	+0.6 ~ -0.2	+0.3 ~ -0.2

Note: Select the sleeve so that the D1 of the sleeve will be same as the diameter of the drill shank.

Cautious points

Using TungSix-Drill

- •Ensure that the drilling machine to be used has sufficient rigidity and motor output.
- Not recommended for drilling stacked plates.
- Be sure to carry out proper alignment when drilling is to be performed on a rotating workpiece.

Cutting fluid

- •Be sure to supply cutting fluid through the tool.
- A water soluble emulsifiable type cutting fluid should be used.
 Fluid pressure of 1 MPa or higher and fluid quantity of 7 l/min or
- more are essential. For 4D and 5D type, a fluid pressure of 1.5 MPa or higher and fluid quantity of 10 l/min or more is recommended.

Cautionary points for setting inserts

- Before installing the insert in the drill body, remove all foreign matter from the insert pocket.
- •When clamping and unclamping the

insert, the center-line of the wrench should be aligned with the center-line of the screw. Misalignment may result in deformation of the socket of the screw head or the tip of the wrench.

- •When installing the insert, eliminate all play between the insert pocket and the bottom face of the insert.
- Replace the screw before it is excessively deformed or worn out by long term use.

-
O⊫€∎⊃●
X
Proper handling of wrench

Use of TungSix-Drill on lathes

Setting of drill body is an important issue for stable machining

Mounting the drill on turret (tool post)

- When mounting drill body, the cutting edges should be parallel to the X-axis of the machine.
- Usually, the drill body is mounted with the direction that the peripheral insert can be seen by the operator.
- As the cotter on shank is parallel to the cutting edges, by tightening the flat with the fixing screw, the cutting edges are guaranteed to be parallel to the X-axis of the machine.

Checking of cutting edge height

- The cutting edge height is an important factor for stable machining.
- The cutting edge of central insert should be 0.2mm lower than the rotating axis of machine.
- For checking the difference between rotating center and the tool block, please use a reference bar that is from ground solid bar.
- In this case, the checking of the center height should be measured at the same position as the overhang length of the drill required.
- When there isn't a reference bar, the ground part of a boring bar can be used as a substitute.

TUNGS X-DRILL

Checking of setting conditions by trial cutting

- After mounting the drill body, the tool center should be checked by trial cutting before production.
- When the drill body is properly set, a core with about ø0.5 mm diameter is left on the bottom of hole.
- If there is no core, the drill is "above center". If the core diameter is larger than ø1mm, it is "excessively below center". In these cases, the cutting edge height has to be checked again.
- When trial cutting, the feed should be 0.1 mm/rev or less, drilling depth should be up to 10 mm.

Adjusting of cutting edge height

When the condition of the cutting edge height is incorrect, the height should be adjusted with the following methods.

②In the case of "slightly above-center" (about 0.05 mm)

In this case, shifting the mounting position to another position may improve the condition.

③ In the case of "excessive belowcenter" (0.2 mm or more)

When this occurs, the large diameter of the core remains and heavy vibration may occur. To improve this situation: Use EZ sleeve (the eccentric sleeve) and adjust the cutting edge height to correct value. Information on EZ sleeve, is on page 13.

Machining with offset on the lathe

A larger hole than the drill diameter can be machined !

Drilling with offset

- When drilling on the lathe, the hole diameter can be adjusted by offsetting the drill body along the X-axis of machine.
- When drilling with offset, the drill body must be correctly mounted with cutting edges parallel to the X-axis of the machine. "Mounting the drill on the turret" can be viewed on page 15.

Shapes of hole bottom

Un-evenness of the hole-bottom face when machined with TungSix-Drill is smaller than with HSS drills !

The shape of the hole bottom machined with TungSix-Drill is closer to flat compared with those machined with HSS drills.

Drill diameter øDc (mm)	ø28 ~32	ø33 ~38	ø39 ~ 46	ø47 ~ 54
Hmax (mm)	1.8	2.1	2.5	2.7

Troubleshooting

Ţ	ype and pla	ce of trouble	Cause	Countemeasures			
	Central cutting edge	Relief surface	Inappropriate cutting conditions	 Increase the cutting speed by 10 % within standard conditions. Lower the feed rate by 10 %. 			
	Peripheral cutting edge	Relief surface	Inappropriate cutting conditions	 Decrease the cutting speed by 10 % within standard conditions. When the feed rate is extremely low or high, set to standard conditions. 			
nsert		Relief	Coolant types and supply method	 Confirm that the cutting fluid flow is higher than 7 liter/min. The concentration of coolant must be higher than 5 %. Use the coolant superior in lubricity. Change to internal coolant supply from external one. 			
al wear of i		surface	Vibration during machining	 Change to the machine with higher torque. Change to the clamp method with rigidity. Change the drill holding method. 			
rm	Common		Looseness of insert clamping	• Tighten the screw.			
Abnoi		Crater wear	Excessive heat occurrence	 Change to internal cutting fluid supply from external one. Increase the supply rate of the cutting fluid. (Higher than 10 liter/min.) Lower the feed rate by 20 % within standard conditions. Lower the cutting speed by 20 % within standard conditions. 			
			Remarkable chip rubbing	 Lower the feed rate by 20 % within standard conditions. Lower the cutting speed by 20 % within standard conditions. 			
		Chipbreaker	Improper chip control, chip packing	 Increase the cutting speed by 20% and lower the feed rate by 20% within standard conditions. Raise the coolant pressure (for higher than 1.5 MPa). 			
		Rotating center of drill	Misalignment in work rotating	 Set the misalignment to 0 ~ 0.2 mm. 			
	Central cutting edge		Machining with large offset	 Check the manual and use the tool in the allowable offset range. 			
			Drilling into non flat surface	 Flatten the entry surface in pre-machining. Set the feed rate for lower than 0.05 mm/rev in rough surface area. 			
			Too high a feed rate	• Lower the feed rate by 20 ~ 50 % within standard conditions.			
			Reuse of chipped corner	 Confirm the corner when exchanging inserts. 			
		Peripheral corner	Use of insert in excess of tool life	• Exchange the corner or the peripheral insert before the corner wear reaches 0.3 mm.			
ⁱ insert	Peripheral cutting		Drilling into non flat surface	 Flatten the entry surface in pre-machining. Set the feed rate for lower than 0.05 mm/rev at rough surface area. 			
e of	euge	area	Presence of interrupted portion on the way of machining	• Set the feed rate for lower than 0.05 mm/rev in interrupted area.			
fractur			Reuse of chipped corner	 Confirm the corner when exchanging inserts. 			
ng and		Unused	Improper chip control, chip packing	 Increase the cutting speed by 20 % and lower the feed rate by 20 % within standard conditions. Raise the fluid pressure (for higher than 1.5 MPa). 			
ippi		cutting edge	Chip recutting	• Lower the feed rate by 20 % within standard conditions.			
Chi			Mechanical impact	 Change to continuous feed in case of pick feeding. 			
		Contract	Use of insert in excess of tool life	• Exchange the corner or the insert before the notch wear reaches 0.3 mm.			
	Common	boundary	Vibration during machining	 Change to the machine with higher rigidity. Change to the clamp method with rigidity. Change the drill setting method. 			
			Work hardness is too high	 Set the feed rate for lower than 0.05 mm/rev. 			
		Flaking	Thermal impact	 Change to internal cutting fluid supply from external one. Lower the feed rate by 20 % within standard conditions. 			
		Common	Looseness in insert clamping	• Tighten the screw.			

Type	and place of trouble	Cause	Countemeasures		
>		Misalignment in work-rotating	• Set the misalignment to $0 \sim 0.2$ mm.		
poc			Use the tool in the allowable offset range.		
drill		Offsetting toward decreasing diameter	Set offset direction extended diameter of workpiece		
ch on c	Peripherv of drill	Drilling into or through non flat surface	 Flatten the entry surface in pre-machining. Set the feed rate for lower than 0.05 mm/rev in rough surface area. 		
crat	body	Fracturing of peripheral insert	• Exchange the insert.		
ig s		Workpiece deflection	 Change to the clamp method with rigidity. 		
Rubbin		Chip packing	 Increase the cutting speed by 20 % and lower the feed rate by 20 % within standard conditions. Raise the fluid pressure (for higher than 1.5 MPa). 		
		Misalignment in work-rotating	• Set the misalignment to 0 ~ 0.2 mm.		
		Improper offsetting.	Adjust offset contents.		
	Hole diameter	Drilling into or through non flat surface	 Flatten the entry surface in pre-machining. Set the feed rate for lower than 0.05 mm/rev at rough surface area. 		
racy		Workpiece deflection	 Change to the clamp method with rigidity. 		
hole accui	Surface finish	Coolant types and supply method	 The concentration of coolant must be higher than 5 %. Use the coolant superior in lubricity. Change to internal coolant supply from external one. 		
nferior		Improper cutting conditions	 Increase the cutting speed by 20 % within standard conditions. Lower the feed rate by 20 % within standard conditions. 		
_	Common	Insert failure	• Exchange the insert.		
		Chip packing	 Increase the cutting speed by 20 % and lower the feed rate by 20 % within standard conditions. Raise the coolant pressure (for higher than 1.5 MPa). 		
		Looseness of insert clamping screw	• Tighten the screw.		
		Improper cutting conditions	 Work within standard conditions. Increase the cutting speed by 10 % within standard conditions. Increase the feed rate by 10 % within standard conditions. 		
	Entangling	Insert failure	• Exchange inserts.		
ntrol		External coolant supplying	 Change to internal coolant supply from external one. Work by step feed. Use dwell function for 0.1 sec approximately. 		
chip co		Chips produced by central edge	 There is a tendency to shorten the chips when shifting to higher speed and feed. 		
0	Chip packing	Improper coolant supply	 Change to internal coolant supply from external one. Raise the coolant pressure (for higher than 1.5 MPa). 		
		Improper cutting conditions	 Increase the cutting speed by 20 % and lower the feed rate by 20 % within standard conditions. Raise the coolant pressure (for higher than 1.5 MPa). 		
	Common	Use of excessively damaged drill body	• Exchange the drill holder.		
		Looseness of insert clamping screw	• Tighten the screw.		
		Improper cutting conditions	 Lower the cutting speed by 20 % within standard conditions. Increase the feed rate by 10 % within standard conditions. 		
		Excessively worn insert	• Exchange the insert.		
able	Chatter	Vibration during machining	 Change to the machine with higher torque rigidity. Change to the clamp method with rigidity. Change the drill holding method. 		
r tro		Looseness of insert clamping screw	• Tighten the screw.		
the		Insufficient machine power and torque	 Use the range of number of revolutions suited machine spec. Lower the feed rate by 20 ~ 50 %. 		
0	Machine stop	Galling	 Exchange inserts before the failure becomes larger. Check that the coolant flows powerfully from the drill. Lower the cutting speed and the feed rate by 20 % within standard conditions. 		
		Insert failure	• Exchange the insert.		
	Large burr	Improper cutting conditions	• Lower the feed rate by 20 ~ 50 % just before leaving from the workpiece.		

Tungaloy Corporation (Head office)

11-1 Yoshima-Kogyodanchi Iwaki-city, Fukushima, 970-1144 Japan Phone: +81-246-36-8501 Fax: +81-246-36-8542 www.tungaloy.co.jp

Tungaloy America, Inc.

3726 N Ventura Drive, Arlington Heights, IL 60004, U.S.A. Phone: +1-888-554-8394 Fax: +1-888-554-8392 www.tungaloyamerica.com

Tungaloy Canada

432 Elgin St. Unit 3, Brantford, Ontario N3S 7P7, Canada Phone: +1-519-758-5779 Fax: +1-519-758-5791 www.tungaloyamerica.com

Tungaloy de Mexico S.A.

C Los Arellano 113, Parque Industrial Siglo XXI Aguascalientes, AGS, Mexico 20290 Phone:+52-449-929-5410 Fax:+52-449-929-5411 www.tungaloyamerica.com

Tungaloy do Brasil Comércio de Ferramentas de Corte Ltda.

Rua dos Sabias N.104 13280-000 Vinhedo, São Paulo, Brazil Phone:+55-19-38262757 Fax:+55-19-38262757 www.tungaloy.co.jp/br

Tungaloy Germany GmbH

An der Alten Ziegelei 1 D-40789 Monheim, Germany Phone: +49-2173-90420-0 Fax: +49-2173-90420-19 www.tungaloy.de

Tungaloy France S.A.S.

ZA Courtaboeuf - Le Rio, 1 rue de la Terre de feu F-91952 Courtaboeuf Cedex, France Phone: +33-1-6486-4300 Fax: +33-1-6907-7817 www.tungaloy.fr

Tungaloy Italia S.r.I.

Via E. Andolfato 10 I-20126 Milano, Italy Phone: +39-02-252012-1 Fax: +39-02-252012-65 www.tungaloy.it

Tungaloy Czech s.r.o

Tuřanka 115 CZ-627 00 Brno, Czech Republic Phone: +420-532 123 391 Fax: +420-532 123 392 www.tungaloy.cz

Tungaloy Ibérica S.L.

C/Miquel Servet, 43B, Nau 7, Pol. Ind. Bufalvent ES-08243 Manresa (BCN), Spain Phone:+34 93 113 1360 Fax:+34 93 876 2798 www.tungaloy.es

Tungaloy Scandinavia AB

S:t Lars Väg 42A SE-22270 Lund, Sweden Phone:+46-462119200 Fax:+46-462119207 www.tungaloy.se

Distributed by:

Tungaloy Rus, LLC

36-G Kostukova str. 308012 Belgorod, Russia Phone:+7 4722 58 57 57 Fax:+7 4722 58 57 83 www.tungaloy.co.jp/ru

Tungaloy Polska Sp. z o.o.

ul. Genewska 24 03-963 Warszawa, Poland Phone: +48-22-617-0890 Fax: +48-22-617-0890 www.tungaloy.co.jp/pl

Tungaloy U.K. Ltd

Hilton Hall Business Centre, Essington Staffordshire, WV11 2BQ, UK Phone:+44 121 309 0163 Fax: +44 121 270 9694 www.tungaloy.co.jp/uk_salesinfo@tungaloyuk.co.uk

Tungaloy Hungary Kft

Erzsébet királyné útja 125 H-1142 Budapest, Hungary Phone: +36 1 781-6846 Fax: +36 1 781-6866 www.tungaloy.co.jp/hu info@tungaloytools.hu

Tungaloy Turkey

Des San. Sit. Ticaret Merk 1. Cad No: 3 / 7 34776 Umraniye Istanbul, Turkey Phone: +90 216 540 04 67 Fax: +90 216 540 04 97 www.tungaloy.co.jp/tr info@tungaloy.com.tr

Tungaloy Cutting Tool (Shanghai) Co.,Ltd.

Rm No 401 No.88 Zhabei, Jiangchang No.3 Rd Shanghai 200436, China Phone: +86-21-3632-1880 Fax: +86-21-3621-1918 www.tungaloy.co.jp/tcts

Tungaloy Cutting Tool (Thailand) Co.,Ltd.

11th Floor, Sorachai Bldg. 23/7, Soi Sukhumvit 63 Klongtonnue, Wattana, Bangkok 10110, Thailand Phone: +66-2-714-3130 Fax: +66-2-714-3134 www.tungaloy.co.th

Tungaloy Singapore (Pte.), Ltd.

31 Kaki Bukit Road 3, #05-19 TechLink Singapore 417818 Phone:+65-6391-1833 Fax:+65-6299-4557 www.tungaloy.co.jp/tspl

Tungaloy India Pvt. Ltd.

Unit#13, B wing, 8th Floor, Kamala Mills Compound Trade World, Lower Parel (West), Mumbai - 4000 13. India Phone: +91-22-6124-8804 Fax: +91-22-6124-8899 www.tungaloy.co.jp/in

Tungaloy Korea Co., Ltd

#1312, Byucksan Digital Valley 5-cha 60-73 Gasan-dong, Geumcheon-gu 153-788 Seoul, Korea Phone:+82-2-6393-8930 Fax:+82-2-6393-8952 www.tungaloy.co.jp/kr

Tungaloy Malaysia Sdn Bhd

50 K-2, Kelana Mall, Jalan SS6/14, Kelana Jaya, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia Phone:+603-7805-3222 Fax:+603-7804-8563 www.tungaloy.co.jp/my

Tungaloy Australia Pty Ltd

Unit 308/33 Lexington Drive Bella Vista NSW 2153, Australia Phone:+612-9672-6844 Fax:+612-9672-6866 www.tungaloy.co.jp/au

ISO 9001 certified QC00J0056 Tungaloy Corporation ISO 14001 certified EC97J1123 Tungaloy Group Japan site and Asian production site

18/10/1996 26/11/1997

